Skip to main content

Explain Cache Operation.





Explain cache operation.
CPU cache
  • Hardware implements cache as a block of memory for temporary storage of data likely to be used again. Central processing units (CPUs) and hard disk drives (HDDs) frequently use a cache, as do web browsers and web servers.
  • A cache is made up of a pool of entries. Each entry has associated data, which is a copy of the same data in some backing store. Each entry also has a tag, which specifies the identity of the data in the backing store of which the entry is a copy. 
  • When the cache client (a CPU, web browser, operating system) needs to access data presumed to exist in the backing store, it first checks the cache. If an entry can be found with a tag matching that of the desired data, the data in the entry is used instead. This situation is known as a cache hit. So, for example, a web browser program might check its local cache on disk to see if it has a local copy of the contents of a web page at a particular URL. In this example, the URL is the tag, and the contents of the web page is the data. The percentage of accesses that result in cache hits is known as the hit rate or hit ratio of the cache.




Disk cache
  • A disk cache is a mechanism for improving the time it takes to read from or write to a hard disk. Today, the disk cache is usually included as part of the hard disk. A disk cache can also be a specified portion of random access memory (RAM). The disk cache holds data that has recently been read and, in some cases, adjacent data areas that are likely to be accessed next. Write caching is also provided with some disk caches.




Comments

Popular posts from this blog

3.1.1 Identify Between Resident And Transient Routines

Memory Management Memory management is concerned with managing: The computer’s available pool of memory Allocating space to application routines and making sure that they do not interfere with each other. 3.1.1 Identify between resident and transient routines The operating system is a collection of software routines. Resident routines Transient routines Routines that directly support application programs as they run Stored on disk and read into memory only when needed Example: routine that control physical I/O Example: routine that formats disks The operating system occupies low memory beginning with address 0. Key control information comes first followed by the various resident operating system routines. The remaining memory, called the transient area, is where application programs and transient operating system routines are loaded. Resident & transient routines structure...

Operating Systems Definition and the Classification of OS

             OPERATING SYSTEMS ( OS ) What is an operating system? An operating system (sometimes abbreviated as "OS") is the program that, after being initially loaded into the computer by a boot program, manages all the other programs in a computer. The other programs are called applications or application programs. The application programs make use of the operating system by making requests for services through a defined application program interface (API). In addition, users can interact directly with the operating system through a user interface such as a command language or a graphical user interface (GUI). An operating system performs these services for applications:     In a multitasking operating system where multiple programs can be running at the same time, the operating system determines which applications should run in what order and how much time should be allowed for each application before g...

2.1.4 Distinguish between logical I/O and physical I/O

2.1.4 Distinguish between logical I/O and physical I/O logical input relate to hard disk Logical I/O an Physical I/O Physical" I/O is an actual fetch of data from a storage device such as a disk. Logical" I/O is a programmatic request for data satisfied by a memory (block, buffer) access. A logical I/O may cause a physical I/O in the first place, or a logical I/O may retrieve a part of a block (buffer) of data from memory. 2.1.5 Distinguish between directory management and disk space management. Directory management A directory is a hierarchical collection of directories and files.  The only constraint on the number of files that can be contained in a single directory is the physical size of the disk on which the directory is located. Disk management A hard disk is a rigid disk inside a computer that stores and provides relatively quick access to large amounts of data. It is the type of storage most often used with Windows. The system also supp...